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ABSTRACT

Two velocity optimization schemes for resolving redundant joint configurations are
compared. The Extended Moore-Penrose Technique minimizes the joint velocities and
avoids obstacles indirectly by adjoining a cost gradient to the solution. A new method
can incorporate inequality constraints directly to avoid obstacles and singularities in the
workspace. A four-link arm example is used to illustrate singularity avoidance while
tracking desired end-effector paths.

1 INTRODUCTION

Kinematic redundancy can be defined as having more degrees of freedom than necessary to
perform a particular task. For a three-dimensional task, the maximum number of end-effector
positions which can be specified is six, three positions and three orientations. Thus a manipulator
with more than six degrees of freedom is generally considered "redundant.” Though redundancy
imposes greater burden during trajectory planning, it is often a desirable property from the
viewpoint of avoiding obstacles and gaining workspace accessibility.

Approaches to resolving the excess degrees of freedom in a kinematically redundant arm
typically fall into one of two categories: (a) specify an additional number of equality constraints
equal to the degree of arm redundancy, or (b) optimize a cost which reflects some desirable local
property of the manipulator. The former case is called the "Extended Jacobian” technique [1]
because the Jacobian is extended until it becomes a square 1-to-1 mapping between the extended
end-effector velocity space and joint velocity space. The latter case is often called the "generalized
inverse” technique because the resulting solution involves a weighted pseudoinverse of the
Jacobian.

This paper focuses on local velocity optimization approaches for solving the redundancy
problem. First, the unconstrained problem is solved resulting in the well known Moore-Penrose
solution. The constrained case is then examined for both a direct and an indirect solution technique:
the direct method is a modified version of Hildreth's quadratic programming procedure, and the
indirect method is the Extended Moore-Penrose Technique. A four-link arm example serves to
illustrate these approaches for avoiding singularities while minimizing joint velocities along a
straight line end-effector path.

2 REDUNDANCY PROBLEM

The redundancy problem can be formulated as follows. Let x be a vector of dimension m
representing the desired positions of the end-effector in workspace coordinates, and let § be a vector
of dimension n representing the joint positions of the manipulator. Typically, the 8j represent
joint angles, but they many also represent distances as in the case of a prismatic joint. If n>m, the
manipulator is "kinematically redundant”.

The constraint that the end-effector must follow a particular trajectory through the workspace
can be expressed by the set of m equations:

x={® Y
This constraint can also be expressed as a velocity constraint by differentiating (1):
3i=J8 )

where J, the partial of f with respect to §, is called the "Jacobian".

A trivial way of resolving the redundancy is to simply choose a set of n-m constraints g(8).
This approach is often referred to as the "Extended Jacobian Technique™ because the additional
constraints can be treated in a manner exactly analogous to X in equation (1). Thus the derivative of



@ can be rewritten as
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where A is the partial of g with respect to 8. Combining (2) and (3) yields
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The coefficient of § in (4) is the called the"extended Jacobian" because it is obtained by adding rows
to the original Jacobian to account for the g constraints. Since the extended Jacobian, Jext, is
square, § can be determined directly from (4) by inverting Jext and multiplying by the end-
effector/constraint velocity vector.

~ Though simple in concept, the extended Jacobian approach is fraught with problems unless the
additional constraints are chosen carefully. If the additional constraint has a simple geometric
interpretation, then the approach may be viable. Otherwise, it is very difficult to show analytically
that the extra constraint can always be achieved given the end-effector path to be followed. Walker
and Marcus [2] present successful results for composite constraints which realize singularity
avoidance and obstacle evasion, but it is not clear whether their constraint is reachable throughout
the workspace. Another possible side-effect of introducing nonphysical constraints is the
inducement of large joint velocities due to complex joint interactions. In addition, the constraint
generally does not realize a performance objective.

One nice feature about this approach is that cyclic motion is attained through the invertible
mapping between the extended end-effector coordinates and joint coordinates. If the subset of the
workspace in which paths can be tracked is simply connected, Baker and Wampler [3] have shown
that closed paths in the workspace produce closed paths in the joint space. Thus when the end
effector returns to its starting position, the arm linkages are also in their initial configuration. This
will prevent the manipulator from drifting when the end-effector is performing repetitive tasks
involving closed paths. This feature is not unique, however, as position-based optimizations also
exhibit this behavior.

3 TRAJECTORY OPTIMIZATION

Instead of resolving the n-m excess degrees of freedom by adding constraints, the optimization
approach takes advantage of the excess degrees of freedom by maximizing a performance objective.
The computational complexity will depend upon the cost used and how constraints are incorporated
in the optimization. Since the effect of the contraint is only strong near a constraint boundary,
undesirable side effects in the arm's behavior are often averted. In addition, extra singularities in the
generalized inverse are introduced only when the inequality constraints are active.

The presence of inequality constraints and computational considerations often lead researchers
to choose local over global optimization procedures. Sometimes minimizing a local cost may
yield better performance than minimizing a global cost. For example, it may be better to minimize
the instantaneous velocity rather than the integral if one is interested in limiting the kinetic energy
present in the system.

A local optimization involves minimizing an instantaneous or "local” cost. One cost function
which has received a lot of attention is the velocity norm

c@=34Ts4é )
Often the weighting matrix S is chosen to be the n x n identity matrix so that one is seeking the

minimum norm solution for 6. Adjoining the velocity constraint (2) to the cost (5) yields the
Hamiltonian

H@®=C® +AT (x-18) _ ©
Minimizing H with respect to § and A, and solving the resulting equations for § yields
g=sUT@s Tyl )

The coefficient matrix of X is the weighted right pseudoinverse, Js!, of the Jacobian since JJ51=I.
The solution in (7) is usually referred to as the "Moore-Penrose Technique™ but is sometimes
referred to as "resolved motion rate control” [4].

The advantages of the velocity-based algorithm include minimization of joint velocities or
kinetic energy (if S is the inertia tensor), and zero joint rates when the end-effector velocity is zero.
A natural byproduct of the first property is that the arm is repelled by most singularities because of
their associated high joint rates. The latter property is a consequence of the minimum norm



solution for the joint rate which only contains components that contribute to the end-effector
velocity. A disadvantage of the Moore-Penrose solution is that it does not have the cyclic property
of position-based solutions. The "Extended Moore-Penrose Technique” (to be discussed later) is a
means of limiting arm drift in performing repetitive tasks but also does not result in cyclic motion.
The requirement that the manipulator not get too close to a singularity is graphically depicted
in Fig. 1 and can be expressed as the union of two inequality constraints
OS0min U 020max ®
where O.qmin and omax represent upper and lower bounds on a, respectively. Since the
minimization is to be performed over the joint velocity not position, the singularity position
constraint in (8) is converted to a velocity constraint
az20 far O=0max )l
as<0 for 0=Clmin :
which is enforced at every time step. Unfortunately, (9) produces a harsh effect when o hits the
constraint boundary, and a smoother transition is achieved through the constraint
o 2 b (Omax-o) for o > (Omax+O%min)/2 (10)
o £ b (Omin-or) for ¢ < (max+Omin)/2
where b>0 is a design parameter which specifies the maximum rate of change in o for a given
change in o and is chosen sufficiently large so that (10) only becomes active near the border.
The local minimization problem with equality constraints for the end-effector and inequality
constraints for the singularity avoidance can now be formulated from (5), (2) and (10):

T C=28Ts@8 (1)
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where A is the gradient of o with respect to 8 and ¢ is the right side of the inequality constraint in
(10). (A mnegative sign precedes these quantities in A and ¢ for the "2" constraints.) Hildreth's
solution [5] to the above problem modified to account for the equality constraints [6] is given by
§=-s"1QTy 12
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where yg are the Lagrange multipliers for the end-effector equality constraints in (11), yy are the
multipliers for the p inequality constraints, and k is the iteration number.

An alternative way of including position inequality constraints is the Extended Moore-Penrose
Technique. Unlike the direct Lagrangian approach just developed, the position constraint is realized
indirectly by including a position term in the unconstrained Moore-Penrose solution which forces a
gradient descent away from the obstacle

8=Jslx + p @-Js1D) VP® (13)
where p is a positive scalar constant, and P(g) is an objective function to be maximized. The first
term in (13) is the minimum norm solution for § which is the unconstrained solution to (5). The
second term is in the nullspace of J and thus contributes nothing to the end-effector motion. Thus
VP can have any value and still not perturb the constraint in (2).

Liegeois [7] experiments with objective functions for a six joint revolute manipulator to
minimize joint deviations while tracking a circle with the end-effector. Klein and Huang (8] report
results for a similar cost using a three-link manipulator being commanded by a joystick. Baillieul
et al [9] consider a manipulability criterion for a planar four-link mechanism and demonstrate the
ability of the extended method to keep the manipulator away from the singular initial configuration.
Only Klein and Huang discuss the effects of varying the size of p, emphasizing the need to scale it
for different end-effector positions.

i=1...m



4 CONSTRAINED VELOCITY OPTIMIZATION EXAMPLE

A schematic of the manipulator used in our study is shown in Fig. 2. The K1607 Robotics
Research® Arm has seven revolute joints in an alternating roll/pitch sequence beginning with the
shoulder roll at the base. The Denavit-Hartenberg (D-H) parameters for the first five joints of this
arm are given in Table I. In this study, we will only be concerned with controlling the cartesian
position of the wrist, the origin of frame 5 in Fig. 2 which is only a function of the first four joint
angles.

Table I: D-H Parameters for Robotics Research K1607 Manipulator.

joint # qj 0j (o]
i {cm deQd (cm)
1 0.00 -90 0.00
2 1429 +90 0.00
3 10.80 90 68.58
4 -10.80 +90 000
5 - - 6858

In the simulation examples, the trajectory planner will be attempting to avoid the singularities
formed by the intersection of the two planes [6]

sin(82) -a2f2(64) apf1(84)
= and 03) = 14
cos(6) = b372(04)-a31(8a) €0S(%3) =372 0s)-a3f1(82) (14

where f1(04) = dsc4+azs4 c;i = cos(0)

f2(04) = d5s4-azc4 si = sin(8;)

These conditions can be used to form a manipulability measure which goes to zero at the line
singularity:

0(@) = Ifyl + Ifp! (15

where  f, = c3(dafz-a3fy) - azfy
fp = sa(d3fz-asfy) + cpazf

In the direct Lagrangian method, o was used for the inequality constraint in the problem
formulation (11). The upper and lower bounds on a were 0.20 m and -0.20 m, respectively, and
the slope parameter, b, was 10.0 s-1. Because the Lagrange multiplier solution is numerical, a
sufficiently close approximation may take several iterations. In the extended Moore-Penrose
method, o was used for P, the position objective. The scalar weighting for the nullspace
component, p, was chosen to be 0.15 which yielded a minimum manipulability of about 0.2 m
(the same as the direct Lagrangian approach). In both cases, the unweighted velocity norm was
used for the objective function.

The end-effector was commanded to follow a straight-line path in the workspace from an initial

joint configuration of 8T = [-0.1 -1.0 0.8 1.3] rad which corresponds to xT = [-0.40 0.68 1.08] m

to a final position of xT= [0.6 0.7 0.5] m. The path acceleration was constant to the midpoint
followed by a constant deceleration of the same magnitude to the end point.

Ten or more iterations on the Lagrange multipliers were often needed before the Lagrange
algorithm converged. The primary driving force behind the convergence rate was the size of the
Lagrange multiplier for the inequality constraint relative to the end-effector multipliers. The larger
the constraint violation in the unconstrained case, the larger the multiplier and the slower the
convergence. Thus the drastic change in the multiplier for the first few iterations propagated
through the other multipliers and caused errors in the end-effector velocities as well.

The degree to which the unconstrained (Moore-Penrose) solution was affected by the
manipulability constraint in the Lagrangian approach is seen in Fig. 3. The joint velocities were
unconstrained until about 1.3 s when the manipulator got close to the line singularity. At this
point, the manipulability constraint took effect preventing further acceleration toward the preset
threshold at 0.2 m. Before the manipulability reached this boundary, the unconstrained solution no
longer violated the constraint, and the solution reverted back to Moore-Penrose. The curves do not
coincide exactly from this point because the joint configurations were altered by the constraint.

The shoulder and elbow joint velocities (joints 2 and 4) in the Lagrangian-constrained
(converged) and unconstrained cases are shown in Fig. 4. These curves more dramatically illustrate



the effect of the manipulability constraint on the arm. All of the unconstrained velocities peaked
when the manipulability reached the minimum in Fig. 3. When the constraint went active, joint 2
underwent a discontinuous jump in acceleration resulting in a decrease in velocity. The constraint
caused a significant but less abrupt decrease in speed for joint 4. Joints 1 and 3 (not shown)
underwent behavior paralleling that of joints 2 and 4, respectively.

The Extended Moore-Penrose approach displayed smoother behavior than the Lagrangian
method. Since the nullspace component was being continuously applied rather than only when an
inequality constraint was being violated, the manipulability measure for the Extended Moore-
Penrose solution in Fig. 5 always differed from that for the unconstrained solution (p=0). At the
beginning of the trajectory, the manipulabilities did not differ greatly, but as the arm drew closer to
the singular configuration, the nullspace component became dominant, driving the manipulator
away from the singularity. When tracking the end-effector trajectory placed the singularity out of
reach, the Extended Moore-Penrose solution once again approached the Moore-Penrose solution.

The pitch joint velocities in the Extended Moore-Penrose case are plotted along with the
unconstrained results in Fig. 6. The velocity of joint 4 was remarkably similar to that for the
Lagrangian approach, but the velocity for joint 2 did not make the same sharp transition near the
singularity. This is because the activity of the inequality constraint in the Lagrangian solution is
binary, and thus does not possess the continuous properties of the Extended Moore-Penrose
approach. Thus, whilst the constant application of the nullspace component is less efficient, it
does yield the advantage of continuous joint velocities.

The cycle computation times for the Extended Moore-Penrose and Lagrangian Techniques were
2.8 msec and 2.9+0.3k msec, respectively, where k is the number of Lagrange multiplier iterations.
By comparison, the unconstrained solution took 2.2 msec, and the extended Jacobian method took

2.0 msec. These times are for Microsoft® C 5.1 running on an InteI® 80386/7 and do not include
the 1.4 msec it takes to compute trigonometric functions of the joint angles.

Although the Extended Jacobian Method would provide the fastest solution, the measure in
(15) would not be a good choice for the constraint because of its limited range. For example,
attempting to hold o constant for the same initial configurations used above fails at 1.3 sec
because it cannot satisfy the specified end-effector trajectory. Kreutz-Delgado et al [10] suggest
using an elbow roll angle for o in their work with a similar arm, but this further restricts the
workspace and does not avoid singularities without knowing a priori which o's cause singularities.

5 CONCLUSIONS

It was discovered that position constraints can be included in the optimization either direcdy or
indirectly. For a quadratic cost and linear constraints, the problem can be solved via Hildreth's
quadratic programming algorithm. This approach incorporates the inequality constraints directly by
iterating on the Lagrange multipliers. A second approach, the Extended Moore-Penrose method,
realizes the constraint by adding a gradient component to the solution which steers the arm away
from the constrained region.

These two approaches were examined for the case of a four-link arm operating in 3-D space.
The goal for this example was to prevent the arm from entering a region surrounding a line
singularity while following a straight line path with the end-effector. The Lagrangian solution
avoided the singularities but had sharp velocity transitions. The Extended Moore-Penrose solution
smoothly avoided the singularity but at the expense of optimality in the velocity norm. The
Extended Moore-Penrose method was more than twice as fast as a ten-iteration Lagrangian when a
single constraint was being applied.

The extension of optimization-based algorithms to include inequality constraints makes them a
more attractive option for redundancy resolution. Instead of simply adding more constraints to
reduce the excess degrees of freedom to zero, the designer can now utilize the redundancy to his
advantage by maximizing some performance objective critical to the task while avoiding
undesirable regions of the workspace. In addition, the penalty for including these constraints may
be less than 50% of the total trajectory computation time for the extended Jacobian solution.
Coupled with new results on their global characteristics, local optimization methods have now
become a viable contender for real-time trajectory planning.
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Figure 2: Robotics Research K1607 Manipulator used in simulations.
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Figure 6: (a) Shoulder and (b) elbow pitch velocities for constrained
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